
Math 342: Abstract Algebra I

2010-2011

Lecture 3: Finite Groups and Subgroups

09/11/311
Dr.Jehan A. Al-bar, Contemporary Abstract 

Algebra, by J. Gallian



Review:
We defined the following groups:
• Zn ; the group of integers modulo n under

addition modulo n,
• GL(2, R); the general linear group of 2-by- 2

matrices over the real numbers,
• U(n); the group of positive integers less than

n and relatively prime to n under multiplica-
tion.

A group has a unique identity element, and every
Element has a unique inverse.
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Finite Groups; Subgroups

Finite groups (groups have finitely
many elements) have interesting
arithmetic properties.

We will give some notions and
terminology first.
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Order of a Group

The number of elements of a group 
(finite or infinite) is its order and is 
denoted by |G|.

Sometimes it is denoted by O(G).
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Examples:

• The group 

U(10) = {1, 3, 7, 9}               
under multiplication modulo 10 has 
order 4.

• The group Z of integers under 
addition has infinite order.
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Order of an element

The order of an element g in a group G is
the smallest positive integer n such that  

g n = e.
In additive notation, this would be           

n g = 0.
We denote the order of g by |g|.
If there is no such integer exists, we say
that g has infinite order.
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Note that

• To find the order of g, you need to 
compute the sequence of products 

g, g2 , g3 ,…

until you reach the identity for the first 
time. The exponent of this product (the 
coefficient in addition) is the order of g.

• If no identity appears in the sequence, 
then g has infinite order.
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Example 1

U(15) = {1, 2, 4, 7, 8, 11, 13, 14} under

multiplication modulo 15.

What is |U(15)|?

What is |7|, |11|, |1|, |2|, |4|, |8|, |13|

and |14|?

Hint: rather than computing the sequence 

131 , 132 , 133 ,…

We use the observation that 13 = -2 mod 15,

so  (13)2 = (-2)2 = 4 and so on.   
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Example 2

Consider Z10 under addition modulo

10.

Find the order of its elements.

Hint: for instant 2+2 is treated as 2*2

And 2+2+2 as 3*2 and so on. 
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Example 3

What would be the order of the

elements in Z under the ordinary

addition?

Study the sequence  a, 2a, 3a,… for

nonzero a in Z
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Some groups are subsets of the other 
with the same binary operation. For 
instance, the group SL(2, R) is a 
subset of the group GL(2, R).
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Subgroups

If a subset H of a group G is itself a 
group under the operation of G, then 
we say that H is a subgroup of G and 
we denote it by H≤G.
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Proper subgroup

If H is a subgroup of G and is not equal 
to G, we write H<G.
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• {e} is the trivial subgroup of G.

• A subgroup that is not {e} is called a
nontrivial subgroup of G.
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A subset of a group under a different
group operation is not a subgroup.

Example:

Zn under addition modulo n is not a
subgroup of Z under addition.

While the elements {0, 1, . . . , n − 1} may 
be regarded as a subset of the integers, 
the group operation of addition modulo 
n is different than the operation on Z. 
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In order to test whether a subset H of a group G is a 
subgroup, we check the four steps:

1. Identify a condition that defines H.
2. prove that the identity satisfies this condition, 

so the identity is in H.
3. For any a, b in H, prove that ab satisfies this 

condition and is therefore in H.
4. For any a in H, prove that a-1 satisfies the 

defining condition and is therefore in H as well.

Note that because the group operation on H
must be the same as the group operation on
G, associativity follows automatically.
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Subgroup Test

To determined whether a subset H of 
a group G is a subgroup, we apply 
any of the following tests instead of 
verifying the group axioms.
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Theorem 3.1 (One-step subgroup test)

Let G be a group and H a nonempty 
subset of G. If ab-1 H  whenever a 
and b are in H, then H is a subgroup 
of G.

(In additive notation, if a-b is in H 
whenever a, b are in H, then H is a 
subgroup of G.) 
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Steps to apply Theorem 3.1

1. Identify a defining condition P (say) 
on H.

2. prove that the identity has condition 
P (that is to say H is nonempty).

3. Assume that two elements a and b 
have condition P.

4. Show that ab-1 has condition P using 
that a and b have condition P.
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Example 4

Let G be an abelian group with identity

e. Let H = {x    G| x2 = e}. Show that H is

a subgroup of G.
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Example 5

Let G be an abelian group under

multiplication with identity e. Show

that H = {x2 |x     G} is a subgroup of G.

H is the set of all squares.
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Theorem 3.2 (Two-step Subgroup 
Test)

Let G be a group and H be a nonempty 
subset of G. If ab in H whenever a 
and b are in H (i.e H is closed under 
the operation) and a-1 is in H 
whenever a is in H (i.e H is closed 
when taking inverses), then H is a 
subgroup of G.

09/11/3122
Dr.Jehan A. Al-bar, Contemporary Abstract 

Algebra, by J. Gallian



To apply Theorem 3.2

Use the assumption that a and b have 
condition P (say) to prove that 

1. ab has condition P and

2. a-1 has condition P as well. 
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How do you prove that a subset of a 
group is not a subgroup?

Do one of the three possible ways

1. show that the identity is not in the 
set.

2. find an element of the set whose 
inverse is not in the set.

3. find two elements in the set 
whose product is not in the set.
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Example 6

Let G be the group of nonzero real 
numbers under multiplication, 

H = {x    G| x = 1 or x is irrational} and

K = {x    G| x ≥ 1}. Show that H and K 
are not subgroups of G.
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Theorem 3.3 (Finite subgroup Test)
Easier to use with finite groups

Let H be a nonempty finite subset of a

group G. If H is closed under the

operation of G, then H is a subgroup of

G.

09/11/3126
Dr.Jehan A. Al-bar, Contemporary Abstract 

Algebra, by J. Gallian


